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Abstract: Formylation of N-4-tolylpiperidine with various N-formylated sec-anilines in phosphoryl
chloride  results in 1,4,5,6-tetrahydro-1-(2-[N-aryl-N-alkylaminomethyl}-4-methyl-phenyl)
-pyridine-3-carbaldehydes (4b) or their iminium salts depending upon workup, together with
5,6,11,12-tetrahydro-N-alkyl-N'-(5-methyl-2-[1,2,3,4-tetrahydro-3-formylpyrid- 1-yl Joenzyl)dibenzo-
[5,A11,5)diazocines (Sb); Related products are formed from the analogous pyrrolidines and
perhydroazepines. Copyright © 1996 Elsevier Science Ltd

We recently disclosed’ a remarkable reaction whereby the interaction of a p-substituted
NN-dimethylaniline 1 with N-formyl-N-substituted arylamides in POCL, gave a dibenzo[1,5]diazocine 2 in good
yield (Scheme 1). The reaction is an example of the 't-amino effect' > and proceeds by Vilsmeier formylation
ortho to the dimethylamino-group, followed by hydride migration (1,5-sigmatropic shift). The resulting new
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iminium jon is positioned ideally to attack the adjacent aromatic ring or nitrogen atom (Scheme 1). Although
dibenzo-1,5-diazocines are known® routes to unsymmetrical derivatives are very limited. Our simple approach
makes these interesting systems readily available with unsymmetrical substitution patterns. We therefore
extended the reaction to other t-anilines including 4-tolyl -pyrrolidines, -piperidines and -perhydroazepines
(3a-c). However these cyclic amines underwent quite different chemistry giving the products of diformylation
4* and triformylation §°, the latter being formed from the former (Scheme 2). Yields of the salts 4 were
generally fair (34-60%) (X = Cl or F) increasing as the heterocyclic ring increased in size. Those of the

diazocines 5 were 15-20%.
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Scheme 2

Surprisingly the iminium salt precursors 6 (Y = OH or PF, ) of the salts 4 were easily extracted with
dichloromethane and chromatographable on silica, the latter salt with ethyl acetate/petroleum! They proved
remarkably resistant to hydrolysis but gave the corresponding aldehydes 4 in high yield after 1-2 hours in
refluxing sodium hydroxide. The diazocine structure Sb was corroborated by X-ray crystallography®.

The key feature in the formation of both products is the hydride transfer form the a—position of a tertiary
amine to an unsaturated ortho-substituent, in this case CH=NR," , the 't-amino effect’ (Scheme 3). However in
the case of the cyclic aliphatic amines, proton loss from the ring's B-position is more rapid than the diazocine
cyclisation, giving the enamine 7 which can then undergo ready formylation. The newly generated t-aniline is
also capable of subsequent ortho-formylation leading by way of the mechanism illustrated in Scheme 1 to the
formation of the diazocine ring of 5. The chemistry illustrates further the powerful synthetic potential of the

't-amino effect’.
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4. Data for compounds 4: 4a (X = Cl); m.p. 123-5°C, M" 340 (C, H,,CIN,O requires 340), 172 (100%);

IR (KBr) 2856, 2790, 1621, 1598, 1573; 'H NMR (CDCL): 2.30(3H,s), 2.97(3H,s), 2.97(2H,t,
1=10), 3.95(2H,t,J=10), 4.41(2H,s), 6.60-7.2(8H, m, aromatic H's), 9.37(1H,s,CHO); °C NMR
(CDCL):21.1, 25.3, 38.6, 55.3, 113.8, 120.2, 122.2, 124.5, 128.9, 129.0, 129.2, 133.0, 137.2, 138.0,
148.2, 156.4,182.9.

4b (X=Cl); oil, M" 354 (C,,;H,,CIN,O requires 354), 214 (100%); IR (KBr) 2850, 2711, 1648, 1596,
1500; 'H NMR (CDCL): 1.98(2H,quint,J=6.2), 2.31(3H,s), 2.40(2H,t, J=6.2), 2.98(3H,s), 3.52(2H,
J=6.2), 4.39(2H,s), 6.60-7.2(8H, m, aromatic H's), 8.99(1H,s,CHO).

4b (X=F); oil, M" 338 (C,,H,,FN,O requires 338), 214 (100%); IR (KBr) 2850, 2715, 1675, 1648,
1598 1511; 'HNMR (CDCL): 1.99(2H,quint, J=6.2), 2.32(3H,s), 2.39(2H, J=6.2), 2.93(3H,s),
3.50(2Ht, J=6.2), 4.34(2H,s), 6.60-7.2(8H, m, aromatic H's), 8.97(1H,s,CHO).

4¢(X=Cl): oil, M" 368 (C,,H,,CIN,O requires 368), 228 (100%); IR (KBr) 2857, 2707, 1652, 1598
1498; '"H NMR (CDCL): 1.65(2H,m), 1.95(2H,m), 2.30(3H,s), 2.56(2H,t, J=6.5), 2.98(3HLs),
3.64(2H,t,J=5.7), 4.42(2H,s), 6.60-7.2(8H, m, aromatic H's), 8.95(1H,s,CHO).

. Data for compounds 5: 5a (X = Cl); M.p.217-9°C, M" 491 (C,;H,,CLN,O requires 491), 291, 201

(100%); IR (KBr) 2859, 2763, 1623, 1567, 1498; 'H NMR (CDCL): 2.36(3H,s), 2.79(2H, J=9.7),
2.83(3H,s), 3.76(2H,t, J=9.7), 4.20(2Hs), 4.22(2H,s), 4.27(2H,s) 6.5-7.2(10H, m, aromatic H's),
9.16(1H,s,CHO); °C NMR (CDCL,): 183.0, 156.5, 148.8, 148.7, 138.6, 136.4, 131.4, 131.2, 131.0,
129.5,128.3, 127.9, 124.4, 123.6, 122.8, 119.9, 118.7, 115.5, 58.3, 55.0, 52.6, 39.2, 25.0, 21.2.

5b (X = CI); M.p.137-9°C, M* 505 (C,,H,,CLN,O requires 505), 291(100%), 215 ; IR (KBr) 2867,
1614, 1590, 1502; 'H NMR (CDCL): 1.78(2H, quint, J=5.7), 2.28(2H,t, J=6.2), 2.34(3H,s),
2.84(3H;s), 3.30(2H,t, J=5.7), 4.28(2H,s), 4.34(2H,s), 4.40(2H,s) 6.5-7.2(10H, m, aromatic H's),
8.86(1H,s,CHO); l3CNIV[R(CDCI,): 187.8, 153.5, 149.1, 148.8, 142.8, 137.6, 133.6, 131.3, 131.0,
130.0, 129.8, 129.2, 128.2, 128.1, 126.9, 126.2, 124.4, 122.9, 119.4, 115.9, 113.7, 58.0, 55.1, 51.9,
50.6, 38.9, 21.2, 20.8, 17.8.

5b (X = F); Mp.212-4°C, M* 473 (C,,H,F,N,O requires 505), 259(100%), 215 ; IR (KBr) 2854,
2807, 1646, 1598, 1577, 1500; 'HNMR (CDCL): 1.74(2H, quint, J=5.7), 2.27(2H.t, J=6.5),
2.34(3H,5), 2.83(3H,s), 3.23(2H,t, J=5.7), 4.12(2H.s), 4.16(2H,s), 4.21(2H,s) 6.3-7.25(10H, m,
aroratic H's), 8.85(1H,5,CHO); C NMR (CDCL,): 187.8, 153.8, 142.6, 137.6, 133.8, 130.3, 129.0,
126.2, 120.6, 120.5, 117.9, 117.6, 117.4, 117.1, 115.9, 115.8, 114.6, 114.5, 114.3, 114.2, 113.1, 58.4,
55.0, 52.5, 50.3, 39.3, 21.2, 20.7, 17.7.

5¢(X = F); M.p.245-7°C, M’ 519 (C,,H,.F,N,O requires 519), 219(100%); IR (KBr) 2863, 2790,
1673, 1614, 1592, 1500; 'H NMR (CDCL): 1.75(2H, quint), 2.47(2H,t, J=5.9), 2.30(3H,s),
2.85(3H,s), 3.46(2H,t, J=5.1), 4.17(2H,s), 4.20(2H,s), 4.29(2H,s), 6.51(1H,s), 6.7-7.1(9H, m,
aromatic H's), 8.87(1H,s,CHO).
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for the X-ray crystallographic results which will be fully reported in the full paper of this work.
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